

MAX FRANK Coupler

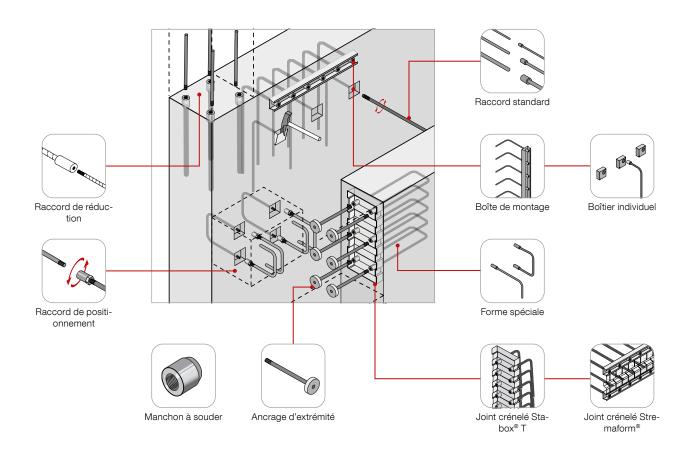
Manchon fileté

Sommaire

Manchon fileté MAX FRANK Coupler
Informations techniques
Variantes du produit
Accessoires
Combinaisons de produits
Références 17

MAX FRANK Coupler

Manchon fileté

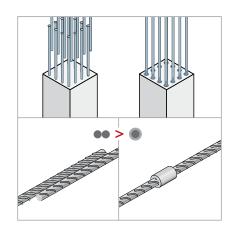

Manchon fileté MAX FRANK Coupler

Liaison mécanique et ancrage d'acier en barres droites au moyen de manchons filetés pour charges statiques et dynamiques

Agrément de l'Institut allemand des techniques de construction (DIBt) pour un diamètre d'acier d'armature de 12 – 40 mm, pour un raccord standard, un raccord de positionnement et un raccord de réduction ainsi que pour un ancrage d'extrémité (Z-1.5-282). Si le joint de recouvrement classique n'est pas réalisable ni admis, il est possible d'utiliser les nouveaux manchons filetés MAX FRANK pour les liaisons. Ils sont également utilisés lorsque le façonnage est impossible en raison du diamètre de l'acier d'armature. La liaison de l'acier d'armature se compose en général d'une barre à manchon fileté préassemblé dans la 1re phase de bétonnage et de la barre de raccordement dans la 2e phase de bétonnage. Les liaisons à l'aide de manchons filetés sont un moyen efficace et avantageux pour relier ou ancrer des barres d'armature soumises à des charges statiques et dynamiques.

Avantages

- Montage simple et rapide
- Disponible pour tous les diamètres d'acier d'armature usuels (12 40 mm)
- Transmission de force à 100 % « bar break »
- Aucune réduction de la section de l'acier d'armature
- Aucun manchon de positionnement requis
- Dimensionné pour les normes internationales : Eurocode 2 (NEN/DIN/BS EN 1992-1-1), ACI 318 type 1-2, norme de contrôle ISO 15835

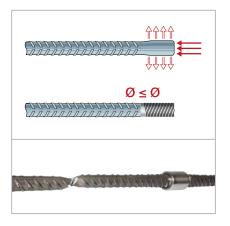


Informations techniques

Taux d'armature

Le taux d'armature dans un élément en béton armé est défini dans les normes correspondantes ou dans les directives relatives aux armatures. Dans des éléments de construction fortement armés, le taux d'armature admissible est souvent dépassé au niveau du joint de recouvrement de l'armature. Ce dernier doit alors être remplacé par une liaison mécanique.

Avec ses dimensions extrêmement compactes et courtes, le Coupler MAX FRANK procure ici des avantages incontestables qui permettent un joint d'about à 100 % – même avec une disposition d'armature très dense. Toutes les barres d'une section peuvent ainsi être posées bout à bout (joint à pleine pénétration).

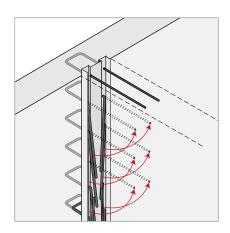


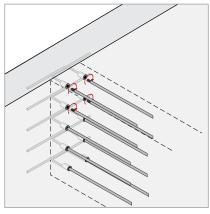
Rupture de barre « bar break »

Les termes de « bar break » désignent la défaillance de l'acier d'armature en dehors de la liaison par manchon.

Avant de couper le filetage, on procède à un léger refoulement des extrémités de l'acier d'armature. Lors des essais de traction, on arrive ainsi à ce que la défaillance de l'éprouvette (« bar break ») se situe en dehors de la liaison par manchon.

Le procédé « soft cold forged » garantit un refoulement en douceur sur toute la longueur du filetage et empêche ainsi toute rupture de fatigue ou rupture fragile au niveau du filetage.

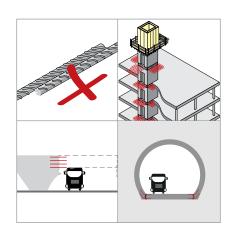

Joint de recouvrement ou liaison mécanique?


Un joint de recouvrement s'utilise généralement pour la liaison de deux fers à béton dont les extrémités sont juxtaposées en parallèle sur une distance donnée. La transmission de force est assurée par le biais de l'adhérence avec le béton.

Les liaisons mécaniques sont mises en œuvre lorsqu'un joint de recouvrement n'est pas possible ou ne se justifie pas. La liaison mécanique constitue une liaison directe, c.-à-d. que la transmission de force a lieu indépendamment de l'adhérence, de la qualité du béton ou du diamètre de l'acier d'armature.

Exemples de liaisons mécaniques :

- Pose de coffrage sans croisements
- Taux d'armature élevé
- Grandes longueurs de recouvrement
- Barres de raccordement en saillie qui entravent le déroulement des travaux
- Les règles de dimensionnement n'autorisent pas un chevauchement



Pose d'armatures avec liaisons mécaniques

Dans de nombreuses applications, les joints de recouvrement constituent un certain risque pour la stabilité de l'ensemble.

Pour cette raison, les chevauchements ne sont pas admis sous certaines conditions, ne le sont que partiellement ou ne se justifient pas. La décision en faveur d'une liaison mécanique des fers à béton peut ainsi être motivée par les grandes dimensions de l'acier d'armature, des constructions dans des régions sismiques, les armatures dans la construction de tunnels ou autres projets d'infrastructure.

De manière générale, il convient d'observer les règles relatives aux grands diamètres de barre selon la norme DIN EN 1992-1-1, point 8.8 ainsi que les annexes nationales applicables.

Charge dynamique – cycle de fatigue à haute fréquence

En cas d'utilisation de liaison mécanique de l'acier d'armature dans des constructions à sollicitations dynamiques comme par ex. les projets d'infrastructure, les tunnels, les ponts, les immeubles de grande hauteur, etc., la liaison mécanique de l'acier d'armature doit présenter une résistance à la fatigue.

Les propriétés des liaisons mécaniques vissées de l'acier d'armature sous charge selon des cycles à haute fréquence peuvent être représentées par une courbe S-N tenant compte des indications de la norme ISO 15835:2009 (courbe de Wöhler), voir la figure Courbe S-N.

Les Coupler MAX FRANK ont été contrôlés conformément aux dispositions et exigences d'essai de justification des liaisons d'acier d'armature selon la norme ISO 15835:2009 ; par conséquent, ils peuvent aussi être mis en œuvre pour des charges dynamiques.

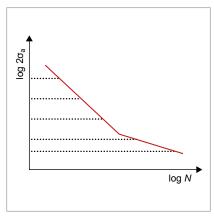
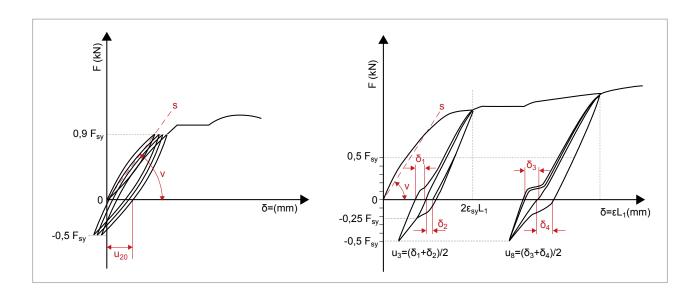
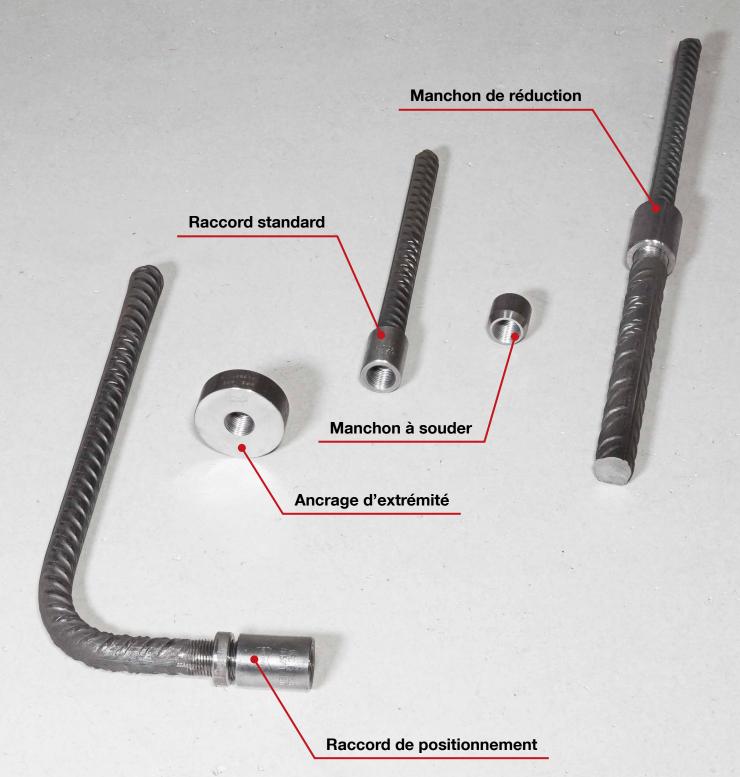


Diagramme S-N


Low Cycle Fatigue – cycle de fatigue à basse fréquence

Le rendement d'une liaison mécanique pour fers à béton se traduit également par son comportement sous contrainte alternée élastique (catégorie de séisme moyen S1) et par son comportement sous contrainte alternée élasto-plastique (catégorie de séisme grave S2), voir Graphiques.

Le comportement des liaisons mécaniques sous charge cyclique est d'une grande importance dans les régions sismiques. Les exigences quant au comportement sismique sont différentes en Europe et dans les autres pays.


Les directives et exigences d'essai pour les liaisons mécaniques sont reprises dans les normes suivantes : ISO 15835:2009, AC133:2010, DIN EN 1998-1:2010-12, Eurocode 8, DIN EN 1998-1/NA: 2011-01, annexe nationale.

Les Coupler MAX FRANK satisfont aux exigences d'essai susnommées. Ils présentent ainsi la résistance et la ductilité requises et répondent aux exigences sévères de performance des catégories S1 + S2 pour le dimensionnement d'ouvrages dans les régions sismiques.

8

Les variantes du produit du Coupler MAX FRANK

Variantes du produit

Raccord standard et raccord de positionnement MAX FRANK Coupler

pour liaisons par manchon tournant librement et fixes

Les mêmes manchons filetés sont utilisés pour les liaisons standard et les liaisons de positionnement.

Pour le **raccord standard**, une barre à manchon est incorporée lors de la 1re phase de bétonnage (PB), la barre de raccordement à relier lors de la 2e PB peut coulisser dans le sens de la longueur et tourner librement.

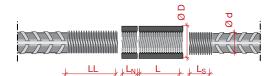
Pour les liaisons de positionnement, cette barre de raccordement peut certes coulisser dans le sens de la longueur mais ne peut pas tourner librement.

C'est pourquoi on intègre tout d'abord une barre filetée protégée lors de la 1re PB. Lors de la 2e PB, une barre filetée avec contre-écrou vissé à la main et manchon fileté préassemblé, est raccordée conformément aux instructions de travail. Seul le processus de travail est modifié, aucun manchon de positionnement spécial n'est requis.

- Agrément technique général allemand, Z-1.5-282
- Agrément roumain, Agrement Tehnic 001SB-01/417-2018

Raccord standard

Raccord de positionnement


Manchons pour raccord standard et raccord de positionnement

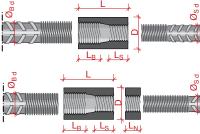
Raccord standard

Numéro d'article Acier d'armature		Manchon		Profondeur de	Dimensions de	Couple de serrage
Manchon standard	Ød	ØD	L	vissage L _S	filetage	
	[mm]	[mm]	[mm]	[mm]	[mm]	[Nm]
CMPST12	12	20	28	14,0	M 14,0 x 2,0	40
CMPST14	14	22,5	32	16,0	M 16,0 x 2,0	80
CMPST16	16	26	36	18,0	M 18,5 x 2,0	120
CMPST18	18	28,5	40	20,0	M 20,5 x 2,0	150
CMPST20	20	32	44	22,0	M 22,5 x 2,0	180
CMPST22	22	34,5	48	24,0	M 24,5 x 2,0	220
CMPST25	24, 25, 26	38	54	27,0	M 27,5 x 2,5	270
CMPST28	28	42	60	30,0	M 30,5 x 2,5	270
CMPST32	32	48	68	34,0	M 34,5 x 2,5	300
CMPST36	36	56,5	78	39,0	M 39,5 x 3,0	300
CMPST40	40	61	85	42,5	M 43,5 x 3,0	350

Raccord de positionnement

Numéro d'article	Numéro d'article	Acier d'armature	Manchon		Longueur de filetage	Longueur de contre-écrou	Dimensions de filetage	Couple de serrage
Manchon	contre-écrou	Ød	ØD	L	L _L min	L _N		•
standard		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[Nm]
CMPST12	CMLN12	12	20	28	37	9	M 14,0 x 2,0	40
CMPST14	CMLN14	14	22,5	32	41	9	M 16,0 x 2,0	80
CMPST16	CMLN16	16	26	36	45	9	M 18,5 x 2,0	120
CMPST18	CMLN18	18	28,5	40	49	9	M 20,5 x 2,0	150
CMPST20	CMLN20	20	32	44	53	9	M 22,5 x 2,0	180
CMPST22	CMLN22	22	34,5	48	57	9	M 24,5 x 2,0	220
CMPST25	CMLN25	24, 25, 26	38	54	67	13	M 27,5 x 2,5	270
CMPST28	CMLN28	28	42	60	73	13	M 30,5 x 2,5	270
CMPST32	CMLN32	32	48	68	81	13	M 34,5 x 2,5	300
CMPST36	CMLN36	36	56,5	78	91	13	M 39,5 x 3,0	300
CMPST40	CMLN40	40	61	85	98	13	M 43,5 x 3,0	350

Raccord de réduction MAX FRANK Coupler


pour connexion par adhérence de différents diamètres d'acier

Les manchons filetés de réduction permettent la liaison d'acier en barres droites avec différents diamètres. Les raccords de réduction sont souvent utilisés pour des colonnes et liaisons entre différents niveaux. Il est également possible de fabriquer des raccords de positionnement avec les manchons de réduction.

Le raccord de réduction dispose d'un agrément technique général, DIBt Z-1.5-282.

Raccord de réduction

Numéro d'article Manchon de	Acier d'a	armature	Manchon		Profondeur de vissage		Dimensions de filetage		Couple de serrage
réduction	$Ø_B d$	Ø _S d	ØD	L	L _B	L _S	Barre _B	Barres	Barres
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			[Nm]
CMPSTR1412	14	12	22,5	35	16	14	M 16,0 x 2,0	M 14,0 x 2,0	40
CMPSTR1614	16	14	26	39	18	16	M 18,5 x 2,0	M 16,0 x 2,0	80
CMPSTR2016	20	16	32	45	22	18	M 22,5 x 2,0	M 18,5 x 2,0	120
CMPSTR2520	25	20	38	54	27	22	M 27,5 x 2,5	M 22,5 x 2,0	180
CMPSTR2825	28	25	42	64	30	27	M 30,5 x 2,5	M 27,5 x 2,5	270
CMPSTR2820	28	20	42	59	30	22	M 30,5 x 2,5	M 22,5 x 2,0	180
CMPSTR3228	32	28	48	71	34	30	M 34,5 x 2,5	M 30,5 x 2,5	270
CMPSTR3225	32	25	48	68	34	27	M 34,5 x 2,5	M 27,5 x 2,5	270
CMPSTR4032	40	32	61	84	43	34	M 43,5 x 3,0	M 34,5 x 2,5	300
CMPSTR4028	40	28	61	80	43	30	M 43,5 x 3,0	M 30,5 x 2,5	270

Manchon à souder MAX FRANK Coupler

pour la liaison de l'acier d'armature avec des éléments de construction métalliques

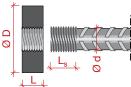
Le manchon à souder constitue une solution efficace pour relier les fers à béton avec des éléments de construction métalliques. Il est fabriqué à partir de matériau soudable et présente un chanfrein continu sur une extrémité pour permettre la réalisation du cordon de soudage.

Comme les autres manchons, le manchon à souder présente un filet métrique et est disponible pour tous les diamètres d'acier d'armature usuels.

Manchon à souder

Numéro d'article Manchon de	Acier d'armature	Manchon		Hauteur de chanfrein	Profondeur de chanfrein	Profondeur de vissage	Dimensions de filetage
réduction	Ød	Ø D	L	h	f	L _S	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
CMPW12	12	20	19	4	4	14,0	M 14,0 x 2,0
CMPW14	14	24	21	4	5	16,0	M 16,0 x 2,0
CMPW16	16	26	24	5	5	18,0	M 18,5 x 2,0
CMPW18	18	30	26	5	6	20,0	M 20,5 x 2,0
CMPW20	20	32	29	7	6	22,0	M 22,5 x 2,0
CMPW22	22	34	31	7	6	24,0	M 24,5 x 2,0
CMPW25	24, 25, 26	38	35	8	7	27,0	M 27,5 x 2,5
CMPW28	28	42	38	8	7	30,0	M 30,5 x 2,5
CMPW32	32	49	43	10	8	34,0	M 34,5 x 2,5
CMPW36	36	61	48	13	13	39,0	M 39,5 x 3,0
CMPW40	40	66	53	10	12	42,5	M 43,5 x 3,0

Ancrage d'extrémité MAX FRANK Coupler


pour l'ancrage de fers à béton

Les ancrages d'extrémité servent à l'ancrage de fers à béton. Les ancrages d'extrémité sont utilisés lorsque la longueur d'ancrage requise pour l'acier d'armature ne peut pas être réalisée dans l'ouvrage et lorsqu'il est impossible d'utiliser des crochets d'extrémité en raison d'une densité d'armature trop élevée ou d'éléments de construction trop minces.

Les ancrages d'extrémité sont disponibles pour tous les diamètres et possèdent également un agrément technique général, Z-1.5-282.

Ancrage d'extrémité

Numéro d'article Ancrage d'extrémité	Acier d'armature	Ancrage	Longueur d'ancrage (épaisseur)	Profondeur de vissage	Dimensions de filetage	Couple de serrage
	Ød	ØD	L	L _S	Barre _S	
	[mm]	[mm]	[mm]	[mm]		[Nm]
CMPA12	12	45	14	14,0	M 14,0 x 2,0	40
CMPA14	14	45	16	16,0	M 16,0 x 2,0	80
CMPA16	16	55	18	18,0	M 18,5 x 2,0	120
CMPA18	18	55	20	20,0	M 20,5 x 2,0	150
CMPA20	20	65	22	22,0	M 22,5 x 2,0	180
CMPA22	22	70	24	24,0	M 24,5 x 2,0	220
CMPA25	24, 25, 26	80	27	27,0	M 27,5 x 2,5	270
CMPA28	28	95	30	30,0	M 30,5 x 2,5	270
CMPA32	32	105	34	34,0	M 34,5 x 2,5	300
CMPA36	36	110	39	39,0	M 39,5 x 3,0	300
CMPA40	40	130	42,5	42,5	M 43,5 x 3,0	350

Accessoires

Accessoires de montage

Boîte de montage MAX FRANK Coupler

- pour une pose en série en toute simplicité
- L'écart entre les barres « s » est choisi au gré
- Boîte de montage avec couvercle et deux extrémités
- Disponible pour tous les diamètres

Clé dynamométrique MAX FRANK Coupler

- Application d'un couple de serrage défini sur la barre de raccordement, conformément aux indications de l'agrément Z-1.5-282
- Tête spéciale de la clé pour les liaisons d'acier d'armature MAX FRANK Coupler de 12 – 40 mm
- Possibilité de réglage en continu du couple de serrage requis

CMDMS730Q20MF14

Ø	Nm
12	40
14	80
16	120
18	150
20	180
22	220
24	270
25	270
28	270

MDMS721Q30MF18

Ø	Nm
20	180
22	220
24 – 28	270
30 – 32	300
36	300
40	350

Capuchons

Capuchons pour filetage MAX FRANK Coupler

- Protection du filetage entre la fabrication et la mise en place
- Capuchons en plastique
- Codage couleur correspondant aux manchons
- Disponible pour tous les diamètres

14

Combinaisons de produits

pour force portante élevée dans le joint de structure (denture pour force transversale, denture pour force de cisaillement)

Les combinaisons de produits avec les manchons filetés MAX FRANK Coupler offrent l'avantage de pouvoir raccorder les fers à béton dans de nombreuses applications.

Afin de garantir une manipulation conviviale, les raccords MAX FRANK Coupler sont incorporés aux éléments préfabriqués en usine.

Les combinaisons de produits permettent à l'ingénieur civil de transposer de manière fiable et sûre ses exigences statiques au joint de reprise (catégorie et armature) lors de l'exécution des travaux.

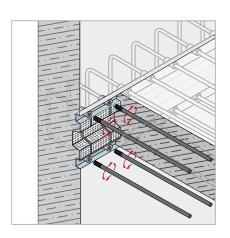
Exemples de combinaisons de produits

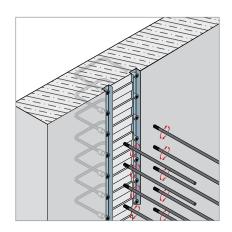
Manchon fileté MAX FRANK Coupler en combinaison avec les boîtes standard Stabox® (forces transversales)

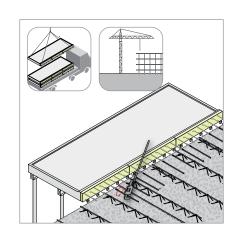
Avec leur forme profilée dans le sens des forces transversales, les boîtes standard Stabox® permettent de réaliser un joint crénelé conforme DIN EN 1992-1-1:2011 (/NA:2011-01).

Cette combinaison de produits constitue l'approche avec la plus grande part portante du béton (joint crénelé) au dimensionnement du joint de structure avec les manchons filetés MAX FRANK Coupler de grands diamètres de 12 à 40 mm. Cette combinaison est réalisable avec une épaisseur d'élément de construction de maximum 30 cm.

Pour des épaisseurs d'élément de construction plus importantes, la combinaison de produits avec Stremaform® est recommandée.

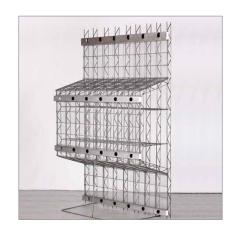



Les manchons filetés MAX FRANK Coupler permettent de confectionner en usine des éléments de coffrage de joint pour éléments de construction fortement sollicités pour tous les cas de charge, avec des barres de 12 à 40 mm de diamètre. De par le profil de la boîte, la variante avec Stabox® T permet une denture dans le sens longitudinal de la boîte pour l'absorption des forces de cisaillement selon DIN EN 1992-1-1:2011 (/NA:2011-01).


Ainsi, lors du dimensionnement de joints de structure fortement sollicités, la part portante du béton peut également être réalisée avec les valeurs assignées les plus élevées pour un joint crénelé dans le sens de poussée.

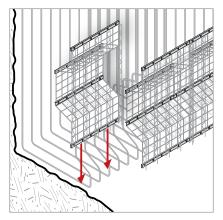
Raccord de dalle en porte-à-faux Egcobox® avec tirants MAX FRANK Coupler en plusieurs parties

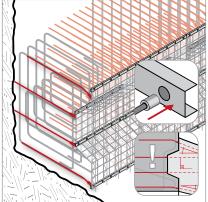
Les raccords de dalle en porte-à-faux Egcobox® présentent des propriétés d'isolation thermique et peuvent être ajustés aux exigences de l'ouvrage ou aux conditions de chantier. Les tirants des raccords Egcobox® sont fabriqués en deux parties ou plus pour garantir de meilleures conditions livraison et de montage avec les manchons filetés MAX FRANK Coupler.

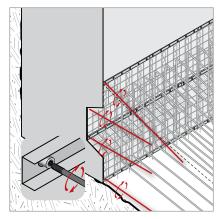

Manchon fileté Coupler en combinaison avec l'élément de coffrage Stremaform®

Outre la combinaison du MAX FRANK Coupler avec la boîte standard Stabox®, la combinaison avec les éléments de coffrage Stremaform® s'avère également optimale pour les forces transversales. Cette variante de combinaison est mise en œuvre avec des éléments de construction d'une épaisseur à partir de 30 cm.

La conformité de la denture des joints avec l'Eurocode 2 et son annexe nationale est donnée par l'élément de coffrage Stremaform®.


Tant l'élément de coffrage que les manchons filetés sont fabriqués conformément à vos exigences et conditions.


Vous trouverez davantage d'informations sur nos pages de produits accessibles via Internet sur le site www.maxfrank.com, ou dans nos brochures sur les éléments de coffrage Stremaform®, le coupleur d'armatures Stabox® et le raccord de dalle en porte-à-faux Egcobox®.



Mise en œuvre

Références

Karlatornet, Göteborg, Suède

Une fois terminé, l'immeuble Karlatornet dans le quartier de Göteborg présentera 73 étages avec des appartements, des bureaux et des hôtels. Avec une hauteur de 245 mètres, le Karlatornet sera le bâtiment le plus haut de la Scandinavie.

Type d'ouvrage : immeuble
Architecte : SOM Architects

Entreprise de construction : Serneke **Achèvement :** 2021

© www.serneke.se

Ayia Napa Marina, Chypre

Le projet Ayia Napa Marina comprend deux tours résidentielles, 20 villas et des bâtiments commerciaux. Les tours présentent chacune une hauteur de plus de 100 mètres et abritent sur leurs 27 ou 28 étages des appartements de luxe.

Type d'ouvrage : bâtiments résidentiels et commerciaux

Architecte: SmithGroupJJR

Entreprise de construction: GEK TERNA Group

Achèvement : 2023

© www.marinaayianapa.com

The Terraced Tower, Rotterdam, Pays-Bas

Le projet « The Terraced Tower » est une tour d'habitation avec une surface habitable totale de plus de 25.000 m² et une hauteur de 110 mètres. Toutes les chambres des appartements donnent accès à une terrasse. Ceci garantit la liaison entre l'intérieur et l'extérieur, ainsi qu'une vue entièrement dégagée sur la ville de Rotterdam.

Type d'ouvrage : immeuble

Maître d'ouvrage : First Sponsor Singapore Provast Den Haag

Architecte: OZ Architekten, Pays-Bas

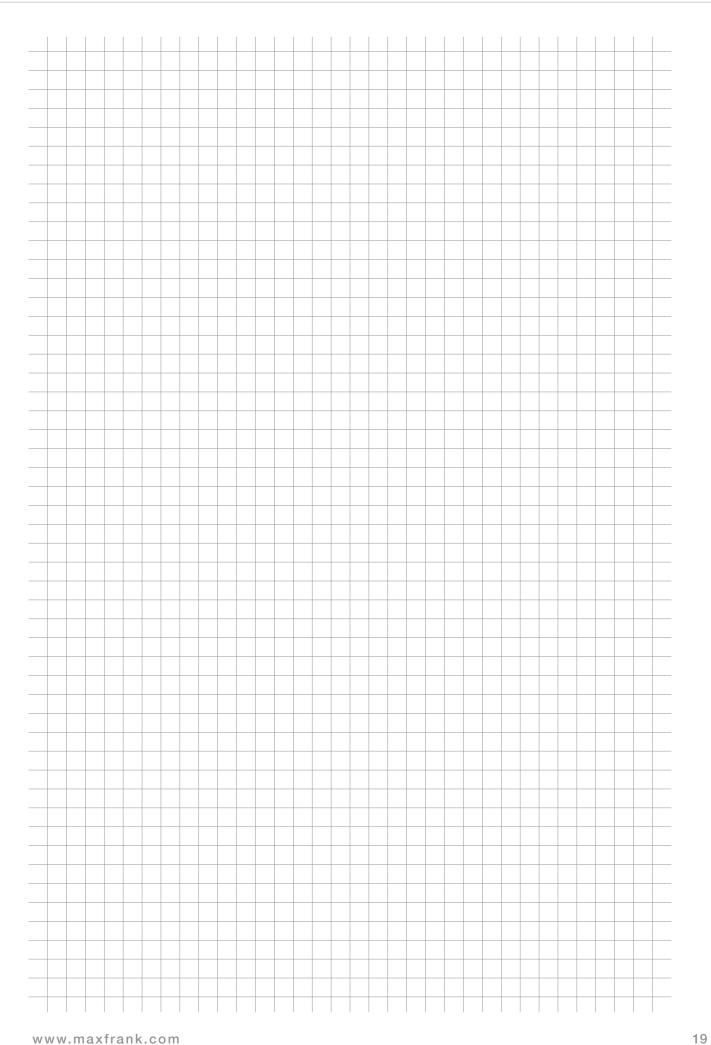
Achèvement: 2019

© PROVAST, https://provast.nl

RETROUVEZ-NOUS EN LIGNE: www.maxfrank.com

Grâce au design Web réactif, vous pouvez naviguer sur le site Web de MAX FRANK avec une grande variété d'appareils et ainsi lire tous les contenus confortablement.

Outre les informations sur nos produits, le site vous propose également nos différentes prestations de service. Vous y trouverez donc des fonctionnalités intéressantes qui vous accompagneront dans toutes les étapes de la construction.


MAX FRANK BUILDINGS

Le célèbre outil est intégré au site Web et est lié aux informations détaillées sur nos produits. Le paysage virtuel vous fournit les produits optimaux pour divers types d'ouvrage : gare, pont, immeuble de bureaux, immeuble tour, hall industriel, station d'épuration, musée, réservoir d'eau potable, tunnel, centrale hydroélectrique et bâtiment résidentiel.

MOTEUR DE RECHERCHE DES PRODUITS

Il vous suffit de filtrer les domaines d'application et les caractéristiques du produit qui vous conviennent et vous trouverez le produit idéal pour satisfaire vos besoins.

Max Frank GmbH & Co. KG

Mitterweg 1 94339 Leiblfing Germany

Tél.: +49 9427 189-0 Fax: +49 9427 1588

info@maxfrank.com www.maxfrank.com